# PAIN



# **ENIGMA-Chronic Pain: a worldwide initiative to identify brain correlates of chronic pain**

Yann Quidé<sup>a,b,\*</sup>, Neda Jahanshad<sup>c</sup>, Jamila Andoh<sup>d</sup>, Georgia Antoniou<sup>e</sup>, Apkar Vania Apkarian<sup>f,g,h</sup>, Yoni K. Ashar<sup>i</sup>, Bashar W. Badran<sup>j</sup>, C. Lexi Baird<sup>k,I</sup>, Luke Baxter<sup>m</sup>, Tyler R. Bell<sup>n,o</sup>, Laura Blanco-Hinojo<sup>p,q</sup>, Jeffrey Borckardt<sup>I,r,s</sup>, Chloe L. Cheung<sup>t</sup>, Daniel Ciampi de Andrade<sup>u</sup>, Bruno A. Couto<sup>u</sup>, Simon R. Cox<sup>v</sup>, Yenisel Cruz-Almeida<sup>w,x,y</sup>, Udo Dannlowski<sup>z</sup>, Enrico De Martino<sup>u</sup>, Marina de Tommaso<sup>aa</sup>, Joan Deus<sup>p,bb</sup>, Martin Domin<sup>cc</sup>, Natalia Egorova-Brumley<sup>dd</sup>, James Elliott<sup>ee,ff,gg</sup>, Silvia Fanton<sup>hh,ii</sup>, Camille Fauchon<sup>jI,kk</sup>, Herta Flor<sup>II</sup>, Carol E. Franz<sup>n,o</sup>, Justine M. Gatt<sup>a,mm,nn</sup>, Paul Gerdhem<sup>oo,pp,qq</sup>, Jodi M. Gilman<sup>rr,ss</sup>, Randy L. Gollub<sup>hh,tr</sup>, Varan Govind<sup>tt</sup>, Thomas Graven-Nielsen<sup>u</sup>, Gustaf Håkansson<sup>oo</sup>, Tim Hales<sup>uu</sup>, Courtney Haswell<sup>k,I</sup>, Nils Jannik Heukamp<sup>vv</sup>, Li Hu<sup>wv,xx</sup>, Lejian Huang<sup>f,g</sup>, Ahmed Hussain<sup>k,I</sup>, Karin Jensen<sup>yy</sup>, Tilo Kircher<sup>zz</sup>, William S. Kremen<sup>n,o</sup>, Elisabeth J. Leehr<sup>z</sup>, Martin Lindquist<sup>aaa</sup>, Marco L. Loggia<sup>hh,ii,bbb</sup>, Martin Lotze<sup>cc</sup>, Katherine T. Martucci<sup>ccc</sup>, Timothy J. Meeker<sup>ddd</sup>, Susanne Meinert<sup>z,eee</sup>, Samantha K. Millard<sup>u</sup>, Rajendra A. Morey<sup>k,I</sup>, Carlos Murillo<sup>i,fff</sup>, Frauke Nees<sup>vv</sup>, Igor Nenadic<sup>zz</sup>, Haeme R.P. Park<sup>a,mm</sup>, Xiaolong Peng<sup>j</sup>, Markus Ploner<sup>ggg</sup>, Jesus Pujol<sup>p</sup>, Linda E. Robayo<sup>hhn</sup>, Teddy Salan<sup>tt</sup>, David A. Seminowicz<sup>iii</sup>, Angela Serian<sup>II</sup>, Rebeccah Slater<sup>m</sup>, Frederike Stein<sup>zz</sup>, Jennifer Stevens<sup>III,kkk</sup>, Sebastian Strauss<sup>III</sup>, Delin Sun<sup>k,I,mmm</sup>, Etienne Vachon-Presseau<sup>nnn,ooo,ppp</sup>, Pedro A. Valdes-Hernandez<sup>x</sup>, Sven Vanneste<sup>qqq,rr,sss</sup>, Mark Vernon<sup>kkk</sup>, Madeleine Verriotis<sup>ttt,uuu</sup>, Tor D. Wager<sup>vvv</sup>, Eva Widerstrom-Noga<sup>hhh</sup>, Anna Woodbury<sup>kkk,wvwv</sup>, Fadel Zeidan<sup>xxx</sup>, Ravi R. Bhatt<sup>c</sup>, Christopher R.K. Ching<sup>c</sup>, Elizabeth Haddad<sup>c</sup>, Sophia I. Thomopoulos<sup>c</sup>, Paul M. Thompson<sup>c</sup>, Sylvia M. Gustin<sup>a,b</sup>

hronic pain has a profound societal burden, affecting 20% to ✓ 30% of the world population,<sup>10,13,14,47</sup> and is associated with high rates of comorbid mental health conditions, especially depression and anxiety.<sup>15</sup> Women and people of increasing age are disproportionately affected by chronic pain, 14,32 and while there are pharmacological and nonpharmacological treatments available, many individuals still do not benefit from these treatments.<sup>11,16,19,31,35,45</sup> One significant challenge in providing effective pain-relieving treatments arises from our incomplete understanding of the mechanisms underlying the development and maintenance of chronic pain. Some of these mechanisms include changes in brain morphology and function.<sup>2,8,12,18,25,28,37</sup> One approach to better understand these mechanisms is to combine neuroimaging studies of diverse populations with the purpose of identifying common phenotypes and neuroimaging correlates. Phenotyping to explore both similarities and heterogeneity across pain conditions is necessary to inform disease prognosis and elucidate common treatment targets. To this endeavor, the Enhancing Neuroimaging and Genetics through Meta-Analysis (ENIGMA)-Chronic Pain working group was formed in November 2022. ENIGMA-Chronic Pain has since welcomed over 70 pain investigators from all over the world, to pool and integrate existing neuroimaging and clinical data from approximately 2000 chronic pain and 4000 pain-free healthy individuals, from over 30 international and independently collected datasets.

## 1. What is ENIGMA? What are the aims of the ENIGMA-Chronic Pain Working Group?

Founded in 2009, the aim of the ENIGMA Consortium is to address the growing replication problems in neuroimaging

research. ENIGMA is a global collaboration of more than 2000 scientists from over 45 countries studying the human brain, in health and over 30 neurological, mental, and neurogenetic diseases.42 ENIGMA coordinates large-scale neuroimaging analyses, pooling existing datasets from around the world, 6,34,39 actively coordinating the reuse of data, while accommodating data privacy safeguards, bringing rich resources and expertise to answer fundamental questions related to major brain disorders. By integrating available existing datasets and building on the growing infrastructure of the ENIGMA consortium, ENIGMA-Chronic Pain provides a platform and a resource to the chronic pain community allowing for data findability, accessibility, interoperability, and<sup>44</sup> reusability—all vital aspects of reproducible research. Using a cost-effective and innovative global approach by merging the resources and data of leading chronic pain neuroimaging centers, ENIGMA-Chronic Pain offers a unique opportunity to obtain detailed, reproducible, and reliable data on brain mechanisms associated with chronic pain. ENIGMA-Chronic Pain integrates single studies of specific chronic pain conditions, including precursor data repositories (eg, OpenPain), and larger population-based biobanks with recorded indices of chronic pain (eg, UK Biobank).<sup>8</sup> Recent advances in machine learning and artificial intelligence technologies also offer new and powerful ways to analyze these existing neuroimaging data. Through a worldwide collaboration of pain researchers and clinicians, ENIGMA-Chronic Pain will aim to (1) determine common and pain condition-specific brain correlates of chronic pain through multimodal neuroimaging (relative to pain-free healthy controls); (2) examine the interactions between chronic pain and comorbid mental health conditions on brain morphology and function; and (3) identify the roles of key sociodemographic factors and medication on brain morphology and function.

## 2. Determine common and pain condition-specific brain correlates of chronic pain through multimodal neuroimaging

ENIGMA-Chronic Pain combines smaller datasets from heterogeneous chronic pain conditions. This approach maximizes the power of planned analyses and is necessary to identify brain correlates shared across chronic pain conditions. Through planned follow-up analyses on pooled datasets of similar pain types, pain locations across the body, or specific diagnoses, ENIGMA-Chronic Pain will identify correlates specific to the studied conditions at a larger scale than has previously been possible. ENIGMA-Chronic Pain will begin with examining brain topography of chronic pain by using common processing pipelines and software such as FreeSurfer for T1-weighted structural magnetic resonance imaging scans (sMRI)<sup>17,20,21</sup> or Functional MRI of the Brain Software Library (FSL) for diffusion MRI (dMRI).<sup>23,38</sup> Further to brain-wide region-of-interest analyses, investigation of multimodal correlates and brain networks of chronic pain will be conducted using whole-brain analyses, including standardized indices of functional connectivity from resting-state functional MRI (rs-fMRI) processed with ENIGMA's HALFpipe,<sup>43</sup> voxel-based morphometry, and machine learning approaches to fuse multimodal features from sMRI, dMRI, and rsfMRI to make diagnostic classification or prediction of a future clinical state.

### **3.** Examine the interactions between chronic pain and comorbid mental health conditions on brain morphology and function

Chronic pain is often accompanied by comorbid mental health conditions that can prevent treatment success.<sup>46</sup> For example, 5% to 85% of individuals with chronic pain (depending on the

Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

<sup>a</sup> School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia, <sup>b</sup> Centre for Pain IMPACT, Neuroscience Research Australia, Randwick, NSW, Australia, <sup>c</sup> Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States, <sup>d</sup> Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, <sup>e</sup> Division of Population Health and Genomics, Medical Research Institute, University of Dundee, Dundee, Scotland, United Kingdom, <sup>f</sup> Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, IL, United States, <sup>g</sup> Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States, h Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States, <sup>1</sup> Department of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States, <sup>1</sup> Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States, <sup>k</sup> Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States, <sup>1</sup> VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States, <sup>m</sup> Department of Paediatrics, University of Oxford, Oxford, United Kingdom, n Department of Psychiatry, University of California, San Diego, CA, United States, Center for Behavior Genetics of Aging, University of California, San Diego, CA, United States, <sup>p</sup> MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain, <sup>q</sup> IsGlobal, Barcelona, Spain, <sup>r</sup> Medical University of South Carolina, Charleston, SC, United States, <sup>s</sup> Ralph H. Johnson VAMC, Charleston, SC, United States, <sup>t</sup> Neuroscience Graduate Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, " Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark, <sup>v</sup> Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom, <sup>w</sup> Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States, \* Department of Community Dentistry and Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States, <sup>y</sup> Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States, <sup>z</sup> Institute of Translational Psychiatry, University of Münster, Münster, Germany, <sup>aa</sup> Neurophysiopathology Unit, DiBrain Department, Bari Aldo Moro University, Bari, Italy, bb Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain, cc Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany, <sup>dd</sup> Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia, <sup>ee</sup> Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia, <sup>ff</sup> Northern Sydney Local Health District, Sydney, NSW, Australia, <sup>gg</sup> The Kolling Institute, St Leonards, NSW, Australia, hh Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States, <sup>ii</sup> Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States,<sup>1</sup> Neuro-Dol, Inserm, University Hospital of Clermont-Ferrand, University of Clermont-Auvergne, Clermont-Ferrand, France, <sup>kk</sup> NEUROPAIN Team, CRNL, CNRS, Inserm, University of Saint-Etienne, Saint-Etienne, France, <sup>II</sup> Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany, <sup>mm</sup> Centre for Wellbeing, Resilience and Recovery, Neuroscience Research Australia, Randwick, NSW, Australia, nn Black Dog Institute, Randwick, NSW, Australia, o Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden, pp Department of Surgical Sciences, Uppsala University, Uppsala, Sweden, qq Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala, Sweden, " Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States, <sup>ss</sup> Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, United States, <sup>tt</sup> Department of Radiology, University of Miami, Miller School of Medicine, Miami, FL, United States, <sup>uu</sup> Consortium Against Pain Inequality, University of Dundee, Dundee, Scotland, United Kingdom, <sup>w</sup> Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany, WW CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China, <sup>xx</sup> Department of Psychology, University of Chinese Academy of Sciences, Beijing, China, <sup>xy</sup> Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, <sup>zz</sup> Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany, <sup>aaa</sup> Department of Biostatistics, Johns Hopkins University, Baltimore, MD, United States, bbb Department of Anesthesia, Clinical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States, ccc Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States, <sup>ddd</sup> Department of Biology, Morgan State University, Baltimore, MD, United States, <sup>eee</sup> Institute for Translational Neuroscience, University of Münster, Münster, Germany, <sup>##</sup> Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium, <sup>999</sup> Department of Neurology, Center for Interdisciplinary Pain Medicine and TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany, hth The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States, " Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada, <sup>III</sup> Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States, <sup>kok</sup> Atlanta Veterans Affairs Healthcare System, Atlanta, GA, United States, <sup>III</sup> Department of Neurology, University Hospital Greifswald, Greifswald, Germany, <sup>mmm</sup> Department of Psychiatry, School of Medicine, Duke University, Durham, NC, United States, nnn Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada, ooo Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, QC, Canada, Ppp Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, QC, Canada, qqq School of Psychology, Trinity College Dublin, Dublin, Ireland, "Trinity Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland, sss Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland, tt Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom, uuu Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom, 👐 Dartmouth College, Hanover, NH, United States, Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States, xox Center for Pain Medicine, Department of Anesthesiology, University of California San Diego, La Jolla, CA, United States

\*Corresponding author. Address: to: NeuroRecovery Research Hub, Biological Sciences (Biolink) Building, Level 1, High St, UNSW Sydney, NSW 2052, Australia. Tel.: +61 (0) 2 9065 1883. E-mail address: y.quide@unsw.edu.au (Y. Quidé).

Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

http://dx.doi.org/10.1097/j.pain.00000000003317

study populations and settings) experience depression.<sup>1,9</sup> The ENIGMA Consortium has extensively investigated the detailed brain and genetic markers of most common mental health conditions and reported alterations in brain regions similar to those commonly reported in smaller chronic pain studies.4,36 Evidence for shared or specific brain mechanisms between chronic pain and depression and anxiety is now growing, 33,40,49,50 but no definite conclusion can be drawn from these smaller studies. Using advanced statistical models, our unique sample size, and availability of indices of comorbid mental health conditions, the pooled dataset from ENIGMA-Chronic Pain will aim to disentangle the fine morphological and functional brain alterations across all pain conditions, but also within specific pain types. This approach will contribute to identify plausible targets for more effective treatments for people living with both chronic pain and these comorbid conditions.

## 4. Examine the roles of key sociodemographic factors and medication on brain morphology and function

Sex and age are key factors that can influence the transition to chronic pain.<sup>48</sup> Women have greater prevalence rates for chronic pain conditions compared with men and experience more frequent, intense, and longer-lasting pain across the lifespan.<sup>14,24,30</sup> These sex-specific differences can affect treatment choice, side effect profiles, and therapeutic responses.<sup>3</sup> Although incompletely understood, many processes including genetic, neuroendocrine/neuroimmune,<sup>26</sup> or brain-based differences,<sup>22</sup> contribute to sex differences observed in chronic pain. Chronic pain is also highly prevalent in people of increasing age,<sup>14</sup> along with other age-related pathologies, but the relationship between increasing age and chronic pain on brain morphology and function is still to be clearly determined. The inclusion of studies with comorbidity information that may inform causal modeling (eg, traumatic injuries, repetitive stress injuries, osteoporosis, metabolic disorders like diabetes, etc.) will clarify some of the brain-body connections at play. Existing preliminary evidence for the influence of these key sociodemographic factors needs further replication and refinement using large datasets. Another critical factor impacting brain morphology and function in chronic pain is the use of various types of pharmacological treatments,27 including tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors, antiepileptics, nonsteroidal anti-inflammatory drugs, and benzodiazepines.<sup>11,35</sup> Using the available and detailed medication information recorded within ENIGMA-Chronic Pain, the aim of this study is to determine the variations in brain morphology and function associated with specific pharmacological treatment categories or combinations of thereof.

## **5. ENIGMA-Chronic Pain: expanding to other imaging modalities**

ENIGMA-Chronic Pain builds on the experience of the Consortium to host the largest and most comprehensive dataset for neuroimaging studies of chronic pain. In addition to sMRI, dMRI, and rs-fMRI data, ENIGMA-Chronic Pain will leverage the contribution of chronic pain researchers and clinicians with data and expertise in other neuroimaging modalities, including restingstate electroencephalography (EEG), task-based fMRI and EEG, event-related potentials, magnetoencephalography, functional near-infrared spectroscopy, and magnetic resonance spectroscopy. In addition, the aim of ENIGMA-Chronic Pain is to include neuromodulation studies, such as repetitive transcranial magnetic resonance stimulation, TMS-EEG, transcranial direct current stimulation, or transcranial alternating current stimulation studies, to examine potential causal associations.<sup>7</sup> Finally, following work from the ENIGMA-Clinical Endpoint working group,<sup>41</sup> a long-term goal includes building a framework of standardized questionnaires and tools for future research, to be applied to most, if not all, chronic pain conditions and to integrate genetics data to better understand the relationship between genetic and environmental risks on brain phenotypes of chronic pain overall and for available subtypes.

## 6. Conclusions

ENIGMA-Chronic Pain will establish the largest worldwide platform for neuroimaging data dedicated to chronic pain research. This approach enables large-scale collaborative opportunities to identify the common and specific brain correlates of chronic pain conditions, as well as the role of mental health comorbidities, key sociodemographic factors, and pharmacological treatment on these alterations. This initiative will provide invaluable new knowledge based on adequately powered neuroimaging datasets. Future aims of the working group could include extending the scope to the earliest periods of the human lifespan, leveraging neonatal MRI and EEG datasets with painrelevant paradigms,<sup>5</sup> to investigate the potential developmental origins of chronic pain susceptibility in later years. Last, we extend the call to additional groups to join, contribute their expertise, and share their neuroimaging, genetic, psychological, and clinical data from healthy controls and individuals with chronic pain (see information and contact details on https://enigma.ini.usc.edu/ ongoing/enigma-chronic-pain/). Through the inclusion of most, if not all, chronic pain neuroimaging research groups, we hope to grow the working group and thereby fulfill its goals.

## **Conflict of interest statement**

None of the authors declare any conflicts of interest. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the United States government, or those of the NHS, the NIHR, or the Department of Health from the United Kingdom.

### Acknowledgments

The ENIGMA-Chronic Pain working group gratefully acknowledges support from the United States National Institutes of Health (NIH) Big Data to Knowledge (BD2K) award (U54EB020403 to P.M.T.). This work was supported by a Rebecca Cooper Fellowship from the Rebecca L. Cooper Medical Research Foundation, grants from the Deutsche Forschungsgemeinschaft (SFB1158/B03, SFB1158/B06, SFB1158/B07, SFB1158/S03N, FOR2107 DA1151/5-1, DA1151/5-2, DA1151/9-1, DA1151/10-1, DA1151/11-1, SFB-TRR58, Projects C09 and Z02, KI588/14-1, KI588/14-2, KI588/20-1, KI588/22-1, NE2254/1-2, NE2254/ 2-1, NE2254/3-1, NE2254/4-1), the Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster (Dan3/ 022/22), a joint grant from the UK Biological and Biotechnology Research Council and the Economic and Social Research Council (BB/W008793/1), the UK Medical Research Council (MR/R024065/1, MR/W002566/1-Consortium Against Pain Inequality), Age UK ("The Disconnected Mind"), the Milton Damerel Trust and the University of Edinburgh, the National Science Foundation NSF GRFP (2020290241), Fonds Wetenschappelijk Onderzoek-FWO (G001419N), the Australian National Health And Medical Research Council (NHMRC Project Grant 1122816), and the US NIH (R01AG050595, R01AG076838, K01AG081559, NIDA R01DA055850, NINDS RM1NS128787). This work is partially funded by a Veterans Affairs Rehabilitation Research and Development award (RX00327) and Center Grant (RX002358). Research at GOSH NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health is supported by the NIHR GOSH Biomedical Research Centre. The Center for Neuroplasticity and Pain (CNAP) is supported by the Danish National Research Foundation (DNRF121), ERC Horizon Europe Consolidator grant PersoN-INpain 101087925, EU Horizon ERC Advanced Grant Mechpain 101141285, TUM Innovation Network NEUROTECH.

#### Article history:

Received 1 May 2024 Received in revised form XXXX Accepted 20 May 2024 Available online 26 July 2024

#### References

- Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity: a literature review. Arch Intern Med 2003;163:2433–45.
- [2] Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, Fields HL, Apkarian AV. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 2012;15:1117–9.
- [3] Bartley EJ, Fillingim RB. Sex differences in pain: a brief review of clinical and experimental findings. Br J Anaesth 2013;111:52–8.
- [4] Bas-Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, van der Wee NJA, Stein DJ; ENIGMA-Anxiety Working Group. ENIGMA-anxiety working group: rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum Brain Mapp 2022;43:83–112.
- [5] Baxter L, Moultrie F, Fitzgibbon S, Aspbury M, Mansfield R, Bastiani M, Rogers R, Jbabdi S, Duff E, Slater R. Functional and diffusion MRI reveal the neurophysiological basis of neonates' noxious-stimulus evoked brain activity. Nat Commun 2021;12:2744.
- [6] Bayer JMM, Thompson PM, Ching CRK, Liu M, Chen A, Panzenhagen AC, Jahanshad N, Marquand A, Schmaal L, Samann PG. Site effects how-to and when: an overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses. Front Neurol 2022;13:923988.
- [7] Bergmann TO, Hartwigsen G. Inferring causality from noninvasive brain stimulation in cognitive neuroscience. J Cogn Neurosci 2021;33: 195–225.
- [8] Bhatt RR, Haddad E, Zhu AH, Thompson PM, Gupta A, Mayer EA, Jahanshad N. Mapping brain structure variability in chronic pain: the role of widespreadness and pain type and its mediating relationship with suicide attempt. Biol Psychiatry 2024;95:473–81.
- [9] Brandl F, Weise B, Mulej Bratec S, Jassim N, Hoffmann Ayala D, Bertram T, Ploner M, Sorg C. Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: a transdiagnostic multimodal meta-analysis of structural and functional MRI studies. Neuropsychopharmacology 2022;47:1071–80.
- [10] Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 2006;10:287–333.
- [11] Cashin AG, Wand BM, O'Connell NE, Lee H, Rizzo RR, Bagg MK, O'Hagan E, Maher CG, Furlan AD, van Tulder MW, McAuley JH. Pharmacological treatments for low back pain in adults: an overview of Cochrane Reviews. Cochrane Database Syst Rev 2023;4:CD013815.
- [12] Cauda F, Palermo S, Costa T, Torta R, Duca S, Vercelli U, Geminiani G, Torta DM. Gray matter alterations in chronic pain: a network-oriented meta-analytic approach. Neuroimage Clin 2014;4:676–86.
- [13] Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. Lancet 2021;397:2082–97.
- [14] Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, Kerns R, Von Korff M, Porter L, Helmick C. Prevalence of chronic pain and high-

impact chronic pain among adults - United States, 2016. MMWR Morb Mortal Wkly Rep 2018;67:1001–6.

- [15] De La Rosa JS, Brady BR, Ibrahim MM, Herder KE, Wallace JS, Padilla AR, Vanderah TW. Co-occurrence of chronic pain and anxiety/ depression symptoms in U.S. adults: prevalence, functional impacts, and opportunities. PAIN 2024;165:666–73.
- [16] Derry S, Conaghan P, Da Silva JA, Wiffen PJ, Moore RA. Topical NSAIDs for chronic musculoskeletal pain in adults. Cochrane Database Syst Rev 2016;4:CD007400.
- [17] Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31: 968–80.
- [18] Farrell SF, Campos AI, Kho PF, de Zoete RMJ, Sterling M, Renteria ME, Ngo TT, Cuellar-Partida G. Genetic basis to structural grey matter associations with chronic pain. Brain 2021;144:3611–22.
- [19] Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpaa M, Hansson P, Jensen TS, Kamerman PR, Lund K, Moore A, Raja SN, Rice AS, Rowbotham M, Sena E, Siddall P, Smith BH, Wallace M. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015;14:162–73.
- [20] Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33: 341–55.
- [21] Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM. Automatically parcellating the human cerebral cortex. Cereb Cortex 2004;14:11–22.
- [22] Gupta A, Mayer EA, Fling C, Labus JS, Naliboff BD, Hong JY, Kilpatrick LA. Sex-based differences in brain alterations across chronic pain conditions. J Neurosci Res 2017;95:604–16.
- [23] Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage 2012;62:782–90.
- [24] Keogh E. Sex and gender differences in pain: past, present, and future. PAIN 2022;163(suppl 1):S108–16.
- [25] Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci 2016;18:20–30.
- [26] Lenert ME, Avona A, Garner KM, Barron LR, Burton MD. Sensory neurons, neuroimmunity, and pain modulation by sex hormones. Endocrinology 2021;162:bqab109.
- [27] Martucci KT, Mackey SC. Neuroimaging of pain: human evidence and clinical relevance of central nervous system processes and modulation. Anesthesiology 2018;128:1241–54.
- [28] McCarberg B, Peppin J. Pain pathways and nervous system plasticity: learning and memory in pain. Pain Med 2019;20:2421–37.
- [29] Mogil JS. Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci 2020;21:353–65.
- [30] Mogil JS. Sources of individual differences in pain. Annu Rev Neurosci 2021;44:1–25.
- [31] Moisset X, Bouhassira D, Avez Couturier J, Alchaar H, Conradi S, Delmotte MH, Lanteri-Minet M, Lefaucheur JP, Mick G, Piano V, Pickering G, Piquet E, Regis C, Salvat E, Attal N. Pharmacological and non-pharmacological treatments for neuropathic pain: systematic review and French recommendations. Rev Neurol (Paris) 2020;176:325–52.
- [32] Osborne NR, Davis KD. Sex and gender differences in pain. Int Rev Neurobiol 2022;164:277–307.
- [33] Quidé Y, Norman-Nott N, Hesam-Shariati N, McAuley JH, Gustin SM. Depressive symptoms moderate functional connectivity within the emotional brain in chronic pain. BJPsych Open 2023;9:e80.
- [34] Radua J, Vieta E, Shinohara R, Kochunov P, Quidé Y, Green MJ, Weickert CS, Weickert T, Bruggemann J, Kircher T, Nenadic I, Cairns MJ, Seal M, Schall U, Henskens F, Fullerton JM, Mowry B, Pantelis C, Lenroot R, Cropley V, Loughland C, Scott R, Wolf D, Satterthwaite TD, Tan Y, Sim K, Piras F, Spalletta G, Banaj N, Pomarol-Clotet E, Solanes A, Albajes-Eizagirre A, Canales-Rodriguez EJ, Sarro S, Di Giorgio A, Bertolino A, Stablein M, Oertel V, Knochel C, Borgwardt S, du Plessis S, Yun JY, Kwon JS, Dannlowski U, Hahn T, Grotegerd D, Alloza C, Arango C, Janssen J, Diaz-Caneja C, Jiang W, Calhoun V, Ehrlich S, Yang K, Cascella NG, Takayanagi Y, Sawa A, Tomyshev A, Lebedeva I, Kaleda V, Kirschner M, Hoschl C, Tomecek D, Skoch A, van Amelsvoort T, Bakker G, James A, Preda A, Weideman A, Stein DJ, Howells F, Uhlmann A, Temmingh H, Lopez-Jaramillo C, Diaz-Zuluaga A, Fortea L, Martinez-Heras E, Solana E, Llufriu S, Jahanshad N, Thompson P, Turner J, van Erp T; ENIGMA Consortium collaborators. Increased power by

harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. Neuroimage 2020;218:116956.

- [35] Rosner J, de Andrade DC, Davis KD, Gustin SM, Kramer JLK, Seal RP, Finnerup NB. Central neuropathic pain. Nat Rev Dis Primers 2023;9:73.
- [36] Schmaal L, Pozzi E, C Ho T, van Velzen LS, Veer IM, Opel N, Van Someren EJW, Han LKM, Aftanas L, Aleman A, Baune BT, Berger K, Blanken TF, Capitao L, Couvy-Duchesne B, K RC, Dannlowski U, Davey C, Erwin-Grabner T, Evans J, Frodl T, Fu CHY, Godlewska B, Gotlib IH, Goya-Maldonado R, Grabe HJ, Groenewold NA, Grotegerd D, Gruber O, Gutman BA, Hall GB, Harrison BJ, Hatton SN, Hermesdorf M, Hickie IB, Hilland E, Irungu B, Jonassen R, Kelly S, Kircher T, Klimes-Dougan B, Krug A, Landro NI, Lagopoulos J, Leerssen J, Li M, Linden DEJ, MacMaster FP, A MM, Mehler DMA, Nenadic I, Penninx B, Portella MJ, Reneman L, Renteria ME, Sacchet MD, P GS, Schrantee A, Sim K, Soares JC, Stein DJ, Tozzi L, van Der Wee NJA, van Tol MJ, Vermeiren R, Vives-Gilabert Y, Walter H, Walter M, Whalley HC, Wittfeld K, Whittle S, Wright MJ, Yang TT, Zarate C Jr, Thomopoulos SI, Jahanshad N, Thompson PM, Veltman DJ. ENIGMA mdd: seven years of global neuroimaging studies of major depression through worldwide data sharing. Transl Psychiatry 2020;10:172.
- [37] Smallwood RF, Laird AR, Ramage AE, Parkinson AL, Lewis J, Clauw DJ, Williams DA, Schmidt-Wilcke T, Farrell MJ, Eickhoff SB, Robin DA. Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J Pain 2013;14:663–75.
- [38] Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31:1487–505.
- [39] Sun D, Rakesh G, Haswell CC, Logue M, Baird CL, O'Leary EN, Cotton AS, Xie H, Tamburrino M, Chen T, Dennis EL, Jahanshad N, Salminen LE, Thomopoulos SI, Rashid F, Ching CRK, Koch SBJ, Frijling JL, Nawijn L, van Zuiden M, Zhu X, Suarez-Jimenez B, Sierk A, Walter H, Manthey A, Stevens JS, Fani N, van Rooij SJH, Stein M, Bomyea J, Koerte IK, Choi K, van der Werff SJA, Vermeiren R, Herzog J, Lebois LAM, Baker JT, Olson EA, Straube T, Korgaonkar MS, Andrew E, Zhu Y, Li G, Ipser J, Hudson AR, Peverill M, Sambrook K, Gordon E, Baugh L, Forster G, Simons RM, Simons JS, Magnotta V, Maron-Katz A, du Plessis S, Disner SG, Davenport N, Grupe DW, Nitschke JB, deRoon-Cassini TA, Fitzgerald JM, Krystal JH, Levy I, Olff M, Veltman DJ, Wang L, Neria Y, De Bellis MD, Jovanovic T, Daniels JK, Shenton M, van de Wee NJA, Schmahl C, Kaufman ML, Rosso IM, Sponheim SR, Hofmann DB, Bryant RA, Fercho KA, Stein DJ, Mueller SC, Hosseini B, Phan KL, McLaughlin KA, Davidson RJ, Larson CL, May G, Nelson SM, Abdallah CG, Gomaa H, Etkin A, Seedat S, Harpaz-Rotem I, Liberzon I, van Erp TGM, Quidé Y, Wang X, Thompson PM, Morey RA. A comparison of methods to harmonize cortical thickness measurements across scanners and sites. Neuroimage 2022;261:119509.
- [40] Tanguay-Sabourin C, Fillingim M, Guglietti GV, Zare A, Parisien M, Norman J, Sweatman H, Da-Ano R, Heikkala E, Perez J, Karppinen J, Villeneuve S, Thompson SJ, Martel MO, Roy M, Diatchenko L, Vachon-Presseau E; PREVENT-AD Research Group. A prognostic risk score for development and spread of chronic pain. Nat Med 2023;29:1821–1831.
- [41] Tate DF, Dennis EL, Lindsey HM, Wilde EA. Harmonization of neuropsychological and other clinical endpoints: pitfalls and possibilities. Neuropsychology 2023;37:233–6.
- [42] Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, Baune BT, Bertolin S, Bralten J, Bruin WB, Bulow R, Chen J, Chye Y, Dannlowski U, de Kovel CGF, Donohoe G, Eyler LT, Faraone SV, Favre P, Filippi CA, Frodl T, Garijo D, Gil Y, Grabe HJ, Grasby KL, Hajek T, Han LKM, Hatton SN, Hilbert K, Ho TC, Holleran L, Homuth G, Hosten N, Houenou J, Ivanov I, Jia T, Kelly S, Klein M, Kwon JS, Laansma MA,

Leerssen J, Lueken U, Nunes A, Neill JO, Opel N, Piras F, Piras F, Postema MC, Pozzi E, Shatokhina N, Soriano-Mas C, Spalletta G, Sun D, Teumer A, Tilot AK, Tozzi L, van der Merwe C, Van Someren EJW, van Wingen GA, Volzke H, Walton E, Wang L, Winkler AM, Wittfeld K, Wright MJ, Yun JY, Zhang G, Zhang-James Y, Adhikari BM, Agartz I, Aghajani M, Aleman A, Althoff RR, Altmann A, Andreassen OA, Baron DA, Bartnik-Olson BL, Marie Bas-Hoogendam J, Baskin-Sommers AR, Bearden CE, Berner LA, Boedhoe PSW, Brouwer RM, Buitelaar JK, Caeyenberghs K, Cecil CAM, Cohen RA, Cole JH, Conrod PJ, De Brito SA, de Zwarte SMC, Dennis EL, Desrivieres S, Dima D, Ehrlich S, Esopenko C, Fairchild G, Fisher SE, Fouche JP, Francks C, Frangou S, Franke B, Garavan HP, Glahn DC, Groenewold NA, Gurholt TP, Gutman BA, Hahn T, Harding IH, Hernaus D, Hibar DP, Hillary FG, Hoogman M, Hulshoff Pol HE, Jalbrzikowski M, Karkashadze GA, Klapwijk ET, Knickmeyer RC, Kochunov P, Koerte IK, Kong XZ, Liew SL, Lin AP, Logue MW, Luders E, Macciardi F, Mackey S, Mayer AR, McDonald CR, McMahon AB, Medland SE, Modinos G, Morey RA, Mueller SC, Mukherjee P, Namazova-Baranova L, Nir TM, Olsen A, Paschou P, Pine DS, Pizzagalli F, Renteria ME, Rohrer JD, Samann PG, Schmaal L, Schumann G, Shiroishi MS, Sisodiya SM, Smit DJA, Sonderby IE, Stein DJ, Stein JL, Tahmasian M, Tate DF, Turner JA, van den Heuvel OA, van der Wee NJA, van der Werf YD, van Erp TGM, van Haren NEM, van Rooij D, van Velzen LS, Veer IM, Veltman DJ, Villalon-Reina JE, Walter H, Whelan CD, Wilde EA, Zarei M, Zelman V; ENIGMA Consortium. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry 2020:10:100.

- [43] Waller L, Erk S, Pozzi E, Toenders YJ, Haswell CC, Buttner M, Thompson PM, Schmaal L, Morey RA, Walter H, Veer IM. ENIGMA HALFpipe: interactive, reproducible, and efficient analysis for resting-state and taskbased fMRI data. Hum Brain Mapp 2022;43:2727–42.
- [44] Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJ, Groth P, Goble C, Grethe JS, Heringa J, t Hoen PA, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone SA, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 2016;3:160018.
- [45] Williams ACC, Fisher E, Hearn L, Eccleston C. Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst Rev 2020;8:CD007407.
- [46] Woo AK. Depression and anxiety in pain. Rev Pain 2010;4:8–12.
- [47] Yongjun Z, Tingjie Z, Xiaoqiu Y, Zhiying F, Feng Q, Guangke X, Jinfeng L, Fachuan N, Xiaohong J, Yanqing L. A survey of chronic pain in China. Libyan J Med 2020;15:1730550.
- [48] Zelaya CE, Dahlhamer JM, Lucas JW, Connor EM. Chronic pain and high-impact chronic pain among U.S. Adults. NCHS Data Brief 2019; 2020:1–8.
- [49] Zheng CJ, Van Drunen S, Egorova-Brumley N. Neural correlates of cooccurring pain and depression: an activation-likelihood estimation (ALE) meta-analysis and systematic review. Transl Psychiatry 2022;12:196.
- [50] Zhou W, Jin Y, Meng Q, Zhu X, Bai T, Tian Y, Mao Y, Wang L, Xie W, Zhong H, Zhang N, Luo MH, Tao W, Wang H, Li J, Li J, Qiu BS, Zhou JN, Li X, Xu H, Wang K, Zhang X, Liu Y, Richter-Levin G, Xu L, Zhang Z. A neural circuit for comorbid depressive symptoms in chronic pain. Nat Neurosci 2019;22:1649–58.